
VANILLA MANUAL

A guide for software and data users

Preliminary Draft

June 2000

Kelly Bender Page 2 07/12/00

Preliminary Draft, June 2000

Table of Contents

TABLE OF CONTENTS... 2

VERSION AND CONTACTS ... 3

GLOSSARY ... 4

OVERVIEW.. 5

TABLE STRUCTURE .. 6

Fragments... 6
Tables... 6
Headers .. 6
Columns ... 8
Variable Length Files... 10

LINKING TABLES.. 12

Keys ... 12
Key Blocks... 12
Dataset.. 13

DATA SEARCHES... 14

APPENDIX... 16

Directory Contents ... 16
File Contents .. 16

DATASET... 16
geo.fmt .. 16
obs.fmt... 18
rad.fmt ... 19
tlm.fmt... 21

FIGURES ... 24

Figure 1 .. 24
Figure 2 .. 25

Kelly Bender Page 3 07/12/00

Preliminary Draft, June 2000

Version and Contacts

This manual documents the Vanilla software.

Present software version: Vanilla 3.10 (6/16/00)

All examples used in this manual are from the Mars Global Surveyor Thermal Emission
Spectrometer [complete listing of sample data is contained in the appendix]. In addition,
all headers and labels are in PDS compliant format. Vanilla was developed at Arizona
State University by Noel Gorelick, Saadat Anwar, Kamran Qazi, and Michael Weiss-
Malik (the programming gurus). This manual was written by Kelly Bender (a Vanilla
user, but not a programmer) and Noel Gorelick. Questions regarding Vanilla can be
directed to vanilla@tes.asu.edu.

mailto:vanilla@tes.asu.edu

Kelly Bender Page 4 07/12/00

Preliminary Draft, June 2000

Glossary

ASCII

DATASET

Fixed-length record

Fixed-length array

Fragment

Key

Key block

PDS

Table

Vanilla

Variable-length record

Kelly Bender Page 5 07/12/00

Preliminary Draft, June 2000

Overview

Vanilla is a database query tool that allows for easy storage and retrieval of fixed and
variable length data. It uses a table format and allows connection between tables via a
primary key. The Vanilla search function is run in a command line format and outputs in
ASCII. Vanilla is easy to learn, user friendly, and easily applied to large datasets.

Prior to using the Vanilla software, the user needs to carefully assess the data that will be
put into the Vanilla database format. Many decisions have to be made regarding the
segregation of the data into different tables, the assignment of column headers, and the
identification of fundamental data links between the various tables that will be used.
Once these issues have been laid out, this manual will help in the actual setup of the
database in Vanilla format. Changes are readily accommodated by Vanilla. It is always
possible to add additional tables as they become necessary (or useful), so the results of
the initial database layout activity can be modified over time.

Using the MGS-TES as an example, the instrument outputs a data stream that contains
radiance data, bolometric data, instrument telemetry, a record of the instrument settings
used for each observation, and a time stamp for every piece of data collected. So just
from the raw instrument output the following tables were devised: radiance data (rad),
bolometric data (bol), telemetry (tlm), and observation parameters (obs). Time is stored
in each of the tables and provides the link among them. In addition to the raw data tables,
other information was needed for use in analysis of the data. In the case of MGS-TES,
geometric information was provided by the project for use in calculating such parameters
as footprint latitude and longitude. The calculated geometry data was put into a table
(geo). Science analysis results and data quality flags are examples of later additions to the
MGS-TES Vanilla database.

Kelly Bender Page 6 07/12/00

Preliminary Draft, June 2000

Table Structure

Fragments

A fragment is the smallest unit of data that Vanilla considers a “file” and therefore has a
filename and contains a header at the start of the fragment prior to the data. There is no
limit to the number of rows or columns contained in a fragment. Fragments with no data
records are bad and will cause the Vanilla program to have problems.

Tables

A table is a collection of one or more related fragments. All fragments in a table must be
sorted in ascending order based on the PRIMARY_KEY (discussed in the key section
below). Vanilla assumes all files with the same name to be fragments of a single table
sorted lexicographically on filename. It also assumes that all fragments in a single table
contain identical keys/columns.

Headers

Each fragment is prefixed with an ASCII header in PDS 3.0 format. The format of this
header consists of sets of keyword=value pairs, followed by the keyword END. A sample
header is given below: [lines are numbered for easy reference – numbering is NOT part
of the PDS format]

1 PDS_VERSION_ID = PDS3
2 FILE_NAME = "OBS04101.DAT"
3 RECORD_TYPE = FIXED_LENGTH
4 RECORD_BYTES = 39
5 FILE_RECORDS = 1245
6 LABEL_RECORDS = 35
7 ^TABLE = 36
8 SPACECRAFT_ID = MGS
9 INSTRUMENT_ID = TES
10 MISSION_PHASE_NAME = "MAPPING"
11 TARGET_NAME = MARS
12 PRODUCT_ID = "TES04101"
13 PRODUCER_ID = MGS_TES_TEAM
14 DATA_SET_ID = "MGS-M-TES-3-TSDR-V1.0"
15 PRODUCT_RELEASE_DATE = 1998-08-18
16 PRODUCT_CREATION_TIME = 1998-08-18T17:30:00
17 START_TIME = 1997-10-26T08:33:44.293
18 STOP_TIME = 1997-10-29T06:43:30.274
19 SPACECRAFT_CLOCK_START_COUNT = 562322042
20 SPACECRAFT_CLOCK_STOP_COUNT = 562574628
21 START_ORBIT_NUMBER = 28
22 STOP_ORBIT_NUMBER = 29

23 OBJECT = TABLE

Kelly Bender Page 7 07/12/00

Preliminary Draft, June 2000

24 NAME = OBS
25 INTERCHANGE_FORMAT = BINARY
26 PRIMARY_KEY = (

"SPACECRAFT_CLOCK_START_COUNT",
"DETECTOR_NUMBER")

27 START_PRIMARY_KEY = (562322042, 1)
28 STOP_PRIMARY_KEY = (562574628, 6)
29 ROWS = 1210

30 ^STRUCTURE = "OBS.FMT"
31 END_OBJECT = TABLE
32 END

The above header consists of three primary parts: a description of the whole fragment, a
pointer to the binary data, and a set of nested PDS objects that identify the contents and
layout of the fragment.

Line 1 identifies the PDS format version for the entire header. Line 2 is the fragment
filename. Fragment (or file) names are comprised of three parts: the table name, the
fragment number and an extension. Table names are defined in the OBJECT=TABLE
section of the header (lines 24). The table name can be any combination of letters, is case
insensitive, and can be any length (TES uses three letters). Fragment numbers must be a
numeric string. There is no limit on the length of the fragment numbers. The extension
will be .DAT or .VAR depending on the data type. The fixed-length records are stored in
files with a .DAT extension. The variable length records that are referenced by an
individual .DAT file can be found in a file with the same name, but with a .VAR
extension. The .DAT extension can take the form .[Dd][Aa][Tt] or .[Tt][Aa][Bb].

Lines 3 - 6 of the header describe the overall structure of the fragment and in this case
indicate that it consists of 1,245 fixed-length records, 39 bytes in length. The entire
ASCII header is padded with white space to occupy an integral number of records of the
39 byte length. The header record number is reported on line 6.

The keyword ^TABLE is a pointer to the start of the binary data (line 7). The number
given with this keyword is the record number of the start of the data. In this case the
record number is 36, which starts at byte 1404 counting from byte zero (35 records * 39
bytes/record).

Lines 8 through 22 are PDS required entries used for archival and data distribution
purposes.

Nested object items (lines 23 – 31) identifies the table that the fragment is part of (line
24), the data format (line 25), the key element used for connection among the various
tables (line 26), the start and stop values of the key element in the fragment (lines 27 and
28), and the number of rows of data contained in the fragment (29). The keyword
^STRUCTURE (line 30) points to a separate file which details the individual column
descriptions. The OBJECT=COLUMN listings are kept in a separate format file
(extension .FMT) that the Vanilla program will access in order to read the data. By
separating the .FMT files for the different tables of data, the user is provided with an easy

Kelly Bender Page 8 07/12/00

Preliminary Draft, June 2000

reference to the contents of each table. Knowledge of the individual column names is
necessary for utilizing the search capabilities of Vanilla.

Columns

All data columns have a name. Occurrences of the same column name in different tables
are assumed by Vanilla to be related. In other words, column descriptions must be unique
but can be used in different tables. For example, NAME = DETECTOR is used in all
TES tables, but the column data type and description are identical everywhere.

The following data types are allowable for use in Vanilla columns:

A. 1, 2, or 4 byte signed or unsigned integer

B. 4 or 8 byte real number

C. fixed length string

D. fixed length array of form A, B, or C

E. 1, 2, or 4 byte bit string of signed or unsigned integer bit fields

F. variable length array of form A, B, or C with maximum array length of 32
kbytes

Vanilla search functions can be used to constrain data extraction in columns with data
types A, B, C, D, or E. Variable length arrays (type F) can not be constrained during data
extraction. More information about the search capabilities of Vanilla is presented later in
this document.

Object listings for all columns in a table are contained in the ^STRUCTURE file
referenced by each data fragment. Part of a sample STRUCTURE file (obs.fmt) is shown
below. [see Appendix for complete *.fmt examples.] The STRUCTURE file lists the
table name, the total number of columns contained in the table/fragment, the number of
bytes per row (all rows must be the same), a description of the table, and an
OBJECT=COLUMN entry for each column [only one is listed below].

NAME = OBS
COLUMNS = 6
ROW_BYTES = 14
DESCRIPTION = " The OBS table stores the state of the

instrument at the start of each observation.
One OBS record is generated for each
observation."

OBJECT = COLUMN
NAME = SPACECRAFT_CLOCK_START_COUNT
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 1

Kelly Bender Page 9 07/12/00

Preliminary Draft, June 2000

BYTES = 4
ALIAS_NAME = sclk_time
DESCRIPTION = "The value of the spacecraft clock at the

beginning of the observation"
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = PNT_ANGLE
DATA_TYPE = MSB_INTEGER
START_BYTE = 12
BYTES = 2
SCALING_FACTOR = .046875
DESCRIPTION = "Scan mirror pointing angle, degrees from

nadir."
END_OBJECT = COLUMN

Each OBJECT=COLUMN listing includes the column name, data type, starting position
(in bytes), size (in bytes), scaling factors if applicable, and description. A scaling factor is
used to convert from the stored value to useful units. A scaling offset may also be
included, but if not included, should be assumed to be zero. Scaling factors and offsets
should be applied as follows:

 scaled_value = (stored_value * scaling_factor) + scaling_offset

Only fixed length data can be scaled and offset. Scaling factors and offsets are applied
automatically by Vanilla during data extraction and automatically convert the data type to
floating point.

Descriptions are provided for every column. These descriptions are surrounded by quotes
and may span several lines.

In some cases the column is a fixed-length array of related, homogeneous values (such as
temperatures or voltages). For that case, the column listing also includes the BYTES term
to indicate the size of the array, and two fields (ITEMS and ITEM_SIZE) to describe the
number and size of a single element in the array. For fixed-length arrays, column
“padding” (leaving unused bytes between data bytes) is allowed, as the start bytes are
listed in the column information.

The following column listing indicates that the column is a homogeneous array of 6, 2-
byte integers.

OBJECT = COLUMN
NAME = INTERFEROGRAM_MAXIMUM
DATA_TYPE = MSB_INTEGER
START_BYTE = 29
BYTES = 12
ITEMS = 6
ITEM_BYTES = 2
SCALING_FACTOR = .000152587890625
DESCRIPTION = "Array of 6 interferogram maximum values"

END_OBJECT = COLUMN

Kelly Bender Page 10 07/12/00

Preliminary Draft, June 2000

Variable Length Files

Variable length data are stored in files separate from the fixed-length data and use .VAR
extensions. For every .VAR fragment there will exist a .DAT fragment with the same
name. The .DAT fragment will contain all the necessary headers and a "pointer" column.
Pointer columns contain the position of the variable length data, in bytes, from the start of
the relevent .VAR file. A position value of -1 in a pointer column indicates that there are
no variable length data for that record.

Additional keywords in the OBJECT=COLUMN listing are used to identify it as a
pointer to a variable length column, and describe the data contained in the variable length
records. These keywords are:

VAR_DATA_TYPE
VAR_ITEM_BYTES
VAR_RECORD_TYPE

The VAR_DATA_TYPE and VAR_ITEM_BYTES keywords are similar to the PDS
keywords DATA_TYPE and ITEM_BYTES, but refer to the structure of the variable-
length data. The VAR_RECORD_TYPE keyword identifies the overall format of the
variable-length record. This keyword has two possible values:

VAR_RECORD_TYPE = VAX_VARIABLE_LENGTH
VAR_RECORD_TYPE = Q15

The value VAX_VARIABLE_LENGTH indicates that the variable-length record has the
size of the record in bytes, as a 2-byte integer, both before and after the record. This
corresponds to the VAX/VMS variable-length record format.

The Q15 format is very similar to the VAX_VARIABLE_LENGTH format; however it is
only used to store floating point values in a compact representation. This format is an
array of floating point mantissas stored as 2-byte signed integers. These mantissas share
a scaling exponent that is stored as the first item in the record as another 2-byte signed
integer. All the elements in the array must be scaled by the exponent, by multiplying
them by 2 to the power (exp-15). Just like the VAX_VARIABLE_LENGTH records, the
Q15 records are also stored with the size of the record in bytes, as a 2-byte integer, both
before and after the record.

A sample variable length fragment header is shown below.

OBJECT = COLUMN
NAME = RAW_RADIANCE
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 9
BYTES = 4
VAR_DATA_TYPE = MSB_INTEGER
VAR_ITEM_BYTES = 2
VAR_RECORD_TYPE = Q15
ALIAS_NAME = raw_rad
DESCRIPTION = "Raw spectral radiance"
UNIT = "transformed volts"

Kelly Bender Page 11 07/12/00

Preliminary Draft, June 2000

END_OBJECT = COLUMN

See Figure 1 for an illustration of a variable length record and how it related to the
column listing. See Figure 2 for a diagram of the Q15 variable length record.

Kelly Bender Page 12 07/12/00

Preliminary Draft, June 2000

Linking Tables

Keys

To access the various tables of data, there must exist a fundamental logical element(s)
common to the entire dataset. This fundamental element is called a key and must be
numeric in value. A key may have more than one element, in which case it is termed a
composite key.

Some tables may have just a single element key while others may have composite keys.
The key is, in effect, the column heading for the first column (or columns) of data. Each
row of data in a fragment/table will have a unique value for the key. Different
fragments/tables with the same key are assumed to be related. Hence, keys provide the
link between the different tables of data.

All data headers will contain the key (termed PRIMARY_KEY in PDS compliant format)
and the start and stop values for the group of data to which the header belongs. For
example:

PRIMARY_KEY = ("SPACECRAFT_CLOCK_START_COUNT",
"DETECTOR_NUMBER")

START_PRIMARY_KEY = (562322042, 1)
STOP_PRIMARY_KEY = (562574628, 6)

The PRIMARY_KEY for any fragment may contain different key elements from other
fragments; however all keys must be a partial subset of the longest composite key and all
key elements must occur in the same order as the longest composite key’s elements.

Key Blocks

For any fragment with a composite key, it is possible for a set of rows to contain the same
value for the first element of the key and unique values for the second element. For
example, using the PRIMARY_KEY above, for any single time value there can exist up
to six different rows of data because there are six possible values for detector. Rows of
data must be sorted in ascending order based on the PRIMARY_KEY. So, for the above
example, the data must start with detector row 1 and end with detector row 6. A group of
data rows with the same value for the first key is termed a key block.

An integral number of key blocks are combined to make a fragment. Key blocks cannot
span fragment boundaries. The key blocks composing the fragment must be sorted in
ascending order based on the PRIMARY_KEY.

Kelly Bender Page 13 07/12/00

Preliminary Draft, June 2000

Dataset

For Vanilla to access data it must have a list of the table names and the locations of their
fragments. This information is stored in a file named DATASET (case sensitive). The
following formats are allowable:

1 One or more fragment filenames for fragments resident in the directory containing the
DATASET file (for example obs00001.dat)

2 One or more table names for tables resident in the directory containing the
DATASET file (for example obs). Vanilla will automatically assume that all
fragments with the same table name are related.

3 One or more path/table name or path/fragment name entries (for example
/mapping/data/p1/obs or /mapping/data/p1/obs00001.dat)

4 One or more path listings that direct Vanilla to a location where another DATASET
file, with appropriate contents, is in residence (for example /mapping/data/p1 – and
p1 contains a DATASET file).

Vanilla uses DATASET to find all available fragments. It then reads the header of the
first fragment of each table to find the column definitions (assuming that all fragments
with the same table name will contain the same columns). Once Vanilla has accessed this
information it is able to search the data as desired by the user. Vanilla can only access
tables that are listed in the DATASET file. Nonexistent tables listed in DATASET are
ignored by Vanilla.

Kelly Bender Page 14 07/12/00

Preliminary Draft, June 2000

Data Searches

The real power of Vanilla is its search capabilities. Searches are done using a command
line input. Data is output in ASCII format and can be read into other tools for data
visualization and analysis.

The usage for Vanilla is:

>vanilla directory –fields “col1 col2 . . .” –select “select1 select2 . . .”

The meaning of each of the arguments is explained below.

directory

This argument is required and must be the absolute or relative path to a directory
containing a DATASET file.

-fields “col1 col2 . . .”

This argument is required and identifies the table columns to output. The list of columns
must be presented as a single string, and so, must be enclosed in quotes if more than one
column is given. The format of a column identifier is:

table.column[index]

Where the ‘table’ and ‘[index]’ portions are optional. Column identifiers are separated by
spaces, so no spaces are allowed within a column identifier.

The table prefix is only necessary when multiple tables contain columns with the same
name (such as key columns). If the table prefix is not specified, the first table listed in the
DATASET file that contains the named column is assumed.

It is possible for some columns in PDS tables to be specified as containing an array of
homogeneous data elements. For these array columns, the optional [index] is used to
specify which element(s) of the array to extract. The index can be a single number,
indicating a single element of the array, or a range of numbers (specified by [low:high]),
indicating multiple consecutive elements. If the user specifies the name of an array
column and does not specify an index or leaves it blank (eg: column[]), the entire array is
output.

Some columns are composed of multiple bit fields. If only the bit column is specified, the
entire “bit word” is output as an integer number. In most cases this is probably not
desirable. To extract a single bit field, the column should be specified by
column:bit_column.

Kelly Bender Page 15 07/12/00

Preliminary Draft, June 2000

All variable length arrays require at least an empty index (ie: name[]). Leaving off the
index extracts the variable length data pointer (the position of the variable length data in
its .VAR file).

If columns from multiple tables are specified, an inner join is performed between all the
tables involved and only those records that exist in all of the tables specified are output.
Searches that use columns in the -fields portion that access tables with no keys in
common will return zero records. If the search uses column names that do not exist in the
fragments available from the DATASET, then Vanilla returns no records. This is
allowable and does not cause any problems.

-select “select1 select2 . . . “

This argument is optional and specifies a selection criteria that a record must meet before
it is output. Like the –fields argument, all the selection criteria must be presented to
Vanilla as a single string and so must be enclosed in quotes. The column(s) used in the -
select portion do not have to be the same ones used in the -fields portion. The format for
a selection is as follows:

table.column[index] lowvalue highvalue

Like the –fields options, the ‘table’ and ‘[index]’ potions are optional and carry the same
meaning. However, with or without the ‘[index]’ portion, the column identifier must
specify only a single data element (eg: the [low:high] fomat for index is not allowed, and
omitting the index is not allowed for arrays).

The ‘lowvalue’ and ‘highvalue’ portions of the selection specify a range that the column
value must lie within before a record is output. Records that don’t meet all the selection
criteria are discarded. The ranges are inclusive; a value must satisfy the following relation
for the record to be considered for output:

lowvalue <= column value <= highvalue

If the column contains a character value, the comparison is lexicographical.

Kelly Bender Page 16 07/12/00

Preliminary Draft, June 2000

Appendix

This appendix contains the sample data set used as examples in this document. The tables
are all contained in a single directory along with the necessary format files – as reflected
by the DATASET file.

Directory Contents

DATASET
geo.fmt
geo07000.dat
obs.fmt
obs07000.dat
rad.fmt
rad07000.dat
rad07000.var
tlm.fmt
tlm07000.dat

File Contents

DATASET
obs
geo
rad
tlm

geo.fmt

NAME = GEO
COLUMNS = 7
ROW_BYTES = 15
DESCRIPTION = "The GEO table contains information about the

sun/spacecraft/target geometry in a format that is
easily searchable. These values are computed for
every scan other than those used to calibrate the
instrument. If a viewing vector does not
intersect the target body (i.e., an atmospheric
observation), then most of the geometry is
calculated relative to the point on the viewing
vector closest to the body (i.e., the tangent
point). If the closest point lies behind the
spacecraft, fill values are used."

OBJECT = COLUMN
NAME = SPACECRAFT_CLOCK_START_COUNT
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 1

Kelly Bender Page 17 07/12/00

Preliminary Draft, June 2000

BYTES = 4
ALIAS_NAME = sclk_time
DESCRIPTION = "The value of the spacecraft clock at the

beginning of the observation"
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = DETECTOR_NUMBER
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 5
BYTES = 1
ALIAS_NAME = detector
DESCRIPTION = "The number of the spectrometer detector that

made the observation. Detectors are numbered from
1 to 6"

END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = LONGITUDE
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 6
BYTES = 2
SCALING_FACTOR = 0.01
DESCRIPTION = "Areocentric west longitude of target point"
UNIT = "DEGREE"

END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = LATITUDE
DATA_TYPE = MSB_INTEGER
START_BYTE = 8
BYTES = 2
SCALING_FACTOR = 0.01
DESCRIPTION = "Areocentric latitude of target point"
UNIT = "DEGREE"

END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = PHASE_ANGLE
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 10
BYTES = 2
SCALING_FACTOR = 0.01
ALIAS_NAME = phase
DESCRIPTION = "Angle between the spacecraft, the target point

and the sun"
UNIT = "DEGREE"

END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = EMISSION_ANGLE
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 12
BYTES = 2
SCALING_FACTOR = 0.01
ALIAS_NAME = emission
DESCRIPTION = "Angle between the spacecraft, the target point

Kelly Bender Page 18 07/12/00

Preliminary Draft, June 2000

and the surface normal vector at the target"
UNIT = "DEGREE"

END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = INCIDENCE_ANGLE
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 14
BYTES = 2
SCALING_FACTOR = 0.01
ALIAS_NAME = incidence
DESCRIPTION = "Angle between the sun, the target point and the

surface normal vector at the target"
UNIT = "DEGREE"

END_OBJECT = COLUMN

obs.fmt

NAME = OBS
COLUMNS = 6
ROW_BYTES = 14
DESCRIPTION = "The OBS table stores the state of the

instrument at the start of each observation. One
OBS record is generated for each observation."

OBJECT = COLUMN
NAME = SPACECRAFT_CLOCK_START_COUNT
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 1
BYTES = 4
ALIAS_NAME = sclk_time
DESCRIPTION = "The value of the spacecraft clock at the

beginning of the observation"
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = ORBIT_NUMBER
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 5
BYTES = 2
ALIAS_NAME = orbit
DESCRIPTION = "The number of the orbital revolution of the

spacecraft around Mars for the observation"
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = INSTRUMENT_TIME_COUNT
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 7
BYTES = 4
ALIAS_NAME = ick
DESCRIPTION = "The number of two-second intervals that have

elapsed since the start of the orbit. The two-
second interval is the smallest time unit defined
by the instrument and equals the time to complete
a single length scan."

Kelly Bender Page 19 07/12/00

Preliminary Draft, June 2000

END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = TEMPORAL_AVERAGE_COUNT
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 11
BYTES = 1
ALIAS_NAME = tic
DESCRIPTION = "The number of two-second scans averaged into

this observation. Valid values are 1, 2 and 4"
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = MIRROR_POINTING_ANGLE
DATA_TYPE = MSB_INTEGER
START_BYTE = 12
BYTES = 2
SCALING_FACTOR = .046875
ALIAS_NAME = pnt_angle
DESCRIPTION = "Scan mirror pointing angle, degrees from nadir

about the spacecraft's +Y axis."
UNIT = "DEGREE"

END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = IMC_COUNT
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 14
BYTES = 1
ALIAS_NAME = pnt_imc
DESCRIPTION = "The number of image motion compensation steps

used."
END_OBJECT = COLUMN

rad.fmt
NAME = RAD
COLUMNS = 8
ROW_BYTES = 20
DESCRIPTION = "

The RAD table contains the raw and calibrated
observed radiances. For each observation there can
be up to 6 RAD records, one for each active
spectrometer detector. If the Temporal
Integration Count (OBS Table,
TEMPORAL_AVERAGE_COUNT) is greater than 1, then
the data represent the average of the measurements
from that many scans.

The instrument can apply a programmable spectral
mask to the raw data causing neighboring channels
to be averaged; however, this feature is used only
when downlink bandwidth is limited. When
spectrally masked data are received, the averaged-
out channels are replaced with the averaged value

Kelly Bender Page 20 07/12/00

Preliminary Draft, June 2000

to expand the spectra back to its original size.
The spectral-mask that was used to perform the
averaging is kept in this table.

The raw spectra are compressed for downlink. The
original bit-packed compression header, containing
the size of the compressed data and the
compression mode used, is kept in this table in
order to be used to evaluate the performance of
the compressor."

OBJECT = COLUMN
NAME = SPACECRAFT_CLOCK_START_COUNT
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 1
BYTES = 4
ALIAS_NAME = sclk_time
DESCRIPTION = "The value of the spacecraft clock at the

beginning of the observation"
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = DETECTOR_NUMBER
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 5
BYTES = 1
ALIAS_NAME = detector
DESCRIPTION = "The number of the spectrometer detector that

made the observation. Detectors are numbered from
1 to 6"

END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = SPECTRAL_MASK
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 6
BYTES = 1
ALIAS_NAME = spectral_mask
DESCRIPTION = "ID number of spectral mask applied. See

ancillary Masks table"
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = COMPRESSION_MODE
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 7
BYTES = 2
ALIAS_NAME = cmode
DESCRIPTION = "16-bit compression header of original data

containing the size and compression mode of the
original compressed data. See TES Users Guide."

END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = RAW_RADIANCE
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 9

Kelly Bender Page 21 07/12/00

Preliminary Draft, June 2000

BYTES = 4
VAR_DATA_TYPE = MSB_INTEGER
VAR_ITEM_BYTES = 2
VAR_RECORD_TYP
E

= Q15

ALIAS_NAME = raw_rad
DESCRIPTION = "Raw spectral radiance"
UNIT = "transformed volts"

END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = CALIBRATED_RADIANCE
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 13
BYTES = 4
VAR_DATA_TYPE = MSB_INTEGER
VAR_ITEM_BYTES = 2
VAR_RECORD_TYP
E

= Q15

ALIAS_NAME = cal_rad
DESCRIPTION = "Calibrated spectral radiance"
UNIT = "watts cm-2 steradian-1 wavenumber-1"

END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = DETECTOR_TEMPERATURE
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 17
BYTES = 2
ALIAS_NAME = tdet
DESCRIPTION = "Derived temperature of the detector, used to

remove instrument radiance in calibration
algorithm"

UNIT = "K"
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = TARGET_TEMPERATURE
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 19
BYTES = 2
ALIAS_NAME = target_temp
DESCRIPTION = "Derived temperature of the observed target"
UNIT = "K"

END_OBJECT = COLUMN

tlm.fmt

NAME = TLM
COLUMNS = 5
ROW_BYTES = 64
DESCRIPTION = "

The TLM table stores the auxiliary observation
parameters downlinked with the long packet format
(see OBS Table, DATA_PACKET_TYPE). Records in the
TLM table occur at a frequency less than or equal

Kelly Bender Page 22 07/12/00

Preliminary Draft, June 2000

to the frequency of OBS records; that is, one (or
none) per observation."

OBJECT = COLUMN
NAME = SPACECRAFT_CLOCK_START_COUNT
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 1
BYTES = 4
ALIAS_NAME = sclk_time
DESCRIPTION = "The value of the spacecraft clock at the

beginning of the observation"
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = AUXILIARY_DIAGNOSTIC_TEMPS
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 5
BYTES = 24
ITEMS = 12
ITEM_BYTES = 2
SCALING_FACTOR = 0.01
ALIAS_NAME = aux_temps
DESCRIPTION = "Array of 12 auxiliary temperatures, Read from

internal instrument thermistors.
1: T5 - Black Body 1
2: T6 - Black Body 2
3: T7 - Black Body 3
4: T8 - Bolometric Black Body Reference (spare)
5: T9 - Electronics
6: T10 - Power Supply
7: T11 - Telescope Field Stop
8: T12 - Interferometer Fixed Mirror
9: T13 - Interferometer Beamsplitter
10: T14 - Interferometer Motor
11: T15 - Primary Mirror
12: T16 - Secondary Mirror"

UNIT = "K"
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = INTERFEROGRAM_MAXIMUM
DATA_TYPE = MSB_INTEGER
START_BYTE = 29
BYTES = 12
ITEMS = 6
ITEM_BYTES = 2
SCALING_FACTOR = 0.000152587890625
ALIAS_NAME = ifgm_max
DESCRIPTION = "Array of 6 interferogram maximum values, one

for each spectrometer detector. Scaling factor is
5.0/32768 V"

UNIT = "VOLTS"
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = INTERFEROGRAM_MINIMUM
DATA_TYPE = MSB_INTEGER

Kelly Bender Page 23 07/12/00

Preliminary Draft, June 2000

START_BYTE = 41
BYTES = 12
ITEMS = 6
ITEM_BYTES = 2
SCALING_FACTOR = 0.000152587890625
ALIAS_NAME = ifgm_min
DESCRIPTION = "Array of 6 interferogram minimum values, one

for each spectrometer detector. Scaling factor is
5.0/32768 V"

UNIT = "VOLTS"
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = ONBOARD_PROCESSING_EVENT_LOG
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 53
BYTES = 12
ITEMS = 6
ITEM_BYTES = 2
ALIAS_NAME = dsp_log
DESCRIPTION = "Array of digital signal processor event logs,

16-bit mask, one for each spectrometer detector.
See TES User's Guide for details"

END_OBJECT = COLUMN

Kelly Bender Page 24 07/12/00

Preliminary Draft, June 2000

Figures

Figure 1

Figure 1. This figure illustrates the use of variable-length records, and how they relate to
the fixed-length records. In this example, the table contains 2 columns, one of which is a
pointer to the variable-length records. The table shows 6 rows, but only 5 of the rows
actually point to variable-length records. The fourth record contains -1 in the pointer
column, indicating that there are no variable-length data for that row. The two column
listings are shown below.

OBJECT = COLUMN
NAME = KEY
DATA_TYPE = ASCII_INTEGER
BYTES = 1

END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = VDATA
DATA_TYPE = ASCII_INTEGER
BYTES = 2
VAR_ITEM_BYTES = 1
VAR_RECORD_TYPE = CHARACTER
VAR_DATA_TYPE = VAX_VARIABLE_LENGTH

END_OBJECT = COLUMN

Kelly Bender Page 25 07/12/00

Preliminary Draft, June 2000

Figure 2

Figure 2. A diagram of a complete Q15 variable length record.

