------------------------------------------------------------------- * Working through a past example ------------------------------------------------------------------- Uranus ring data extraction and manipulation Task: Extract three cuts of the Epsilon ring, and compute the eccentricity of the outer edge of the ring using radiuses and longitudes. (roughly) Steps: 1) Went to DOCUMENT:TUTORIAL.TXT, to see overview of data. From 2.1 "Derived Ring Profiles", we see that separate profiles are given for Uranus in EASYDATA. 2) Went to EASYDATA/DATAINFO.TXT to get information for the naming convention of the files. The smallest resolution is located in /KM000_1: so used: EASYDATA/KM000_1/PU1P01EI.TAB (SSI) and PU1P01EE.TAB (SSE). None of the same resolution exists for beta Per Ingress, however, so extracted the data for the next available data in the EASYDATA directory. Use: EASYDATA/KM0001/PU2P01EI.TAB (BPI). 3) Opened files, and plotted the data (I used Mac Kaleidagraph). 4) Extracted the three radiuses at the outer edge. (Mac Kaleidagraph provides a 'microscope' to zoom into x and y values on curves. I zoomed into the midpoint of the outer edge of the ring and determined the following values.) r_1 (=SSI) = 50885.7 km r_2 (=SSE) = 50758.9 km r_3 (=BPI) = 51006.5 km 5) Extracted the corresponding three longitudes at the outer edge. Went to GEOMETRY/GEOMINFO.TXT to get the information for the naming convention of the files. GEOMETRY/PU1G01EI.TAB (SSI) and PU1G01EE.TAB (SSE), and PU2G01EE.TAB (BPI) provide data for longitudes in 2000 and 1950 coordinates. Plotted each and blew up the region around r_{1,2,3} above. Used the Kaleidagraph microscope tool to extract the longitude (this tool implicitly interpolates) for the longitudes at the ranges of each of the Epsilon ring cuts. theta_1 (=SSI) = 266.5 deg (2000) theta_2 (=SSE) = 305.5 deg (2000) theta_3 (=BPI) = 21.1 deg (2000) 5) Compute longitude of periapse: longitude_0 (3 equations, 3 unknowns) r_1 = a(1-e^2) / (1+e COS (theta_1 - theta_0) ) r_2 = a(1-e^2) / (1+e COS (theta_2 - theta_0) ) r_3 = a(1-e^2) / (1+e COS (theta_3 - theta_0) ) Solving for longitude_0 theta_1 = theta_1 * !pi / 180. theta_2 = theta_2 * !pi / 180. theta_3 = theta_3 * !pi / 180. numerator = COS(theta_2)*(r_2 r_3 - r_1 r_2) + COS(theta_1)*(r_1 r_2 - r_1 r_3) + COS(theta_3)*(r_1 r_3 - r_2 r_3) denominator = SIN(theta_2)*(r_1 r_2 - r_2 r_3) + SIN(theta_1)*(r_1 r_3 - r_1 r_2) + SIN(theta_3)*(r_2 r_3 - r_1 r_3) long_0 = ATAN[ numerator / denominator ] = -51.1 deg (Uranus Notebook #1,pg. 26 = -47.2179 deg) 5) Compute eccentricity at the outer edge. e = (r_1 - r_2) / (r2 COS(theta_2 - theta_0) - r1 COS(theta_1 - theta_0) ) e = 9.7 E-03 (Uranus Notebook #1,pg. 26 = 8.24622E-03, Elliot&Nicholson, _Planetary Rings_ = 7.94E-03) So then, same magnitude as 'right answer', but off, due to only working with a few significant digits, and lower resolution of the cuts used here, especially BPI.