5.1.3 SENSOR BLEMISHES

5.1.3.1 NAC FM SENSOR BLEMISHES CALIBRATION RESULTS

As reported in Reference 5.1.3.1-1

Reference 5.1.3.1-1 - IOM 388-PAG-CCA98-2, 'NAC FM Calibration Results: Sensor Blemishes - Revision 1'', Charlie Avis, January 20, 1998, Revision Summary: Corrected last sentence of 'Introduction'

Reference 5.1.3.1-2 - C. Avis, 'Software Design Document for Instrument Calibration Cassini ISS', Version 2.1, 10 July 1995

Reference 5.1.3.1-3 - C. Avis, "NAC FM Calibration Results: Linearity", IOM 388-PAG-CCA97-7, 24 September 1997

5.1.3.1.1 INTRODUCTION

The Narrow-angle Flight Model thermal/vacuum testing included the acquisition of a set of flatfield images for determination the system gain. These data were also applicable for assessing the response of each pixel over the full dynamic range of the instrument. Reference 5.1.3.1-3 reported upon the global and regional variations in linearity for the various camera modes. This report deals with the linearity of each pixel and documents those which show non-linear behavior.
Sequences of increasing exposures were taken at temperatures of $+25^{\circ} \mathrm{C}$. Gain 0 and 1 were taken in 4×4 and 2×2 mode respectively and Gain 2 and 3 in $1 x 1$ mode. All data were taken with Antiblooming 'OFF' except that Gain 2 was also taken with Antiblooming 'ON'. (Data were taken at $+5^{\circ} \mathrm{C}$, but with a different set of Main Electronics).
Multiple input files submitted to the blemish analysis were combined at each exposure level to suppress data errors and improve the signal-to-noise ratio.
All data were taken with PC_Voltage=9. This commandable parameter, however, has no direct effect on the full-well level of the sensor (at least in the value range between 4 and 10).

5.1.3.1.2 METHOD

Sensor blemishes are defined in this analysis as pixels having a light transfer function with nonlinearities greater than specified thresholds.
The characteristics of the light transfer curve of each pixel are analyzed through the use of a set of radiometric files. These are generated by fitting the data from a light transfer sequence to a linear model for each pixel. Given that

$$
e=r\left(t-t_{0}\right)
$$

where $e \quad$ is the 'energy' received by a pixel
r is the scene radiance
$t \quad$ is the commanded exposure time
$t_{0} \quad$ is the shutter offset

Then, the linear model is defined as

$$
d=c e+d_{0}
$$

where d is the recorded DN
$c \quad$ is the radiometric slope
$d_{0} \quad$ is the dark-current
The following radiometric files are created containing values for each pixel:

1. The slopes $z=1 / c$ are output to the radiometric slope file CAL (REAL*4 data).
2. The d_{0} are output to the dark-current file DC as $128 \times d_{0}$ (16-bit integer).
3. The highest tested DN value $\left(d_{f v}\right)$ before the pixel's response drops below a specified threshold is stored in the saturation file SAT (16-bit integer). Pixels which show no drop are given a value of 32767.
4. The maximum absolute difference (in DN) between the input data samples and the fitted curve

$$
\varepsilon_{\max }=\max \left\{\left|c e_{i}+d_{0}-d_{i}\right|\right\}
$$

is stored in the error file ERR (16-bit integer).
5. The RMS error (in DN) for the fit

$$
\varepsilon_{r m s}=\sqrt{\frac{1}{m} \sum_{i=1}^{m}\left(c e_{i}+d_{0}-d_{i}\right)^{2}}
$$

is stored in the RMS file (16-bit integer).

The CAL, ERR, RMS, and DC files are used to identify and classify camera blemishes. The user specifies the valid range of $d_{0}, \varepsilon_{r m s}, \varepsilon_{\text {max }}$, and z :

1. $M I N D C<d_{0}<M A X D C$
2. $\varepsilon_{\text {rms }}>M A X R M S$
3. $\varepsilon_{\text {max }}>$ MAXERR
4. MINSLOPE $<z<$ MAXSLOPE

The criteria are checked in the order: 1-4. A pixel is not checked further after failing a given check. The blemishes are recorded in a Blemish File used by subsequent programs to remove blemishes.
The Blemish File is in 16-bit integer format, and defines blemishes by using vectors of the form (line,samp, CLASS, $d_{f w}$), where line and samp are the picture coordinates where the blemish occurs, $d_{f w}$ is the DN value at which the pixel saturates at full-well, and CLASS classifies each blemish by
which neighbors are available for interpolation to remove the blemish (see Reference 5.1.3.1-2). The format of the Blemish File was not designed to handle hundreds of thousands of low-full-well pixels. This prohibited them from being classified and stored in the Blemish File, so only the permanent blemishes are stored there, i.e., $d_{f v}=0$ in all cases.

5.1.3.1.3 RESULTS: NON-LINEARITIES

The valid ranges used for the blemish tests were set as follows:

1. Slope:
2. Dark-current:
3. $\varepsilon_{\max }$ and $\varepsilon_{r m s}$:

Any slope > 0 allowed
Any dark-current > 0 allowed
Limits based upon the histogram of the values, but $\varepsilon_{\text {max }}$ no larger than 40 (1% of 4095)

The distribution of the histogram of the $\varepsilon_{\max }$ and $\varepsilon_{r m s}$ clearly showed the difference between the values for normal pixels and the values for the various blemish pixels.

The following table shows the number of pixels flagged as blemishes and their location.
$+25^{\circ} \mathrm{C}$

Gain/AB	Permanent blemishes	Blems not in first or last line, or first or last sample	Location (line,sample)
3/OFF	0	0	
2/OFF	80	3	$(3,1023)(1022,60)(2,567)$
2/ON	4	0	
1/OFF	959	1	$(2,2)$
0/OFF	511	0	

The blemish test for the 4×4 mode was performed on the low end of the light transfer curve only. Otherwise, all pixels would also be flagged as permanent blemishes by failing the $\varepsilon_{\max }$ and $\varepsilon_{r m s}$ tests at the high exposure levels.

The following plots show the response of four interior pixels that were flagged as permanent blemishes. Two show deviations at one point of less than 2% while others have large excursions from linearity.

5.1.3.1.4 RESULTS: RESPONSE FALLOFF

In some camera modes, the high DN regime shows a falloff in sensor response. The degree of shortfall can be easily extracted from the DN of the last two exposures and the exp=0 value:

$$
d^{\prime}(n)=\frac{e x(n)}{e x(m)}(d(m)-d(0))+d(0)
$$

where $d^{\prime}(n)$ is the expected DN of the highest exposure level
ex(n) is the exposure time of highest exposure level
$d(0) \quad$ is the DN of the exp=0 frame
$d(m) \quad$ is the DN of highest exposure level without shortfall
$e x(m)$ is the exposure time of highest exposure level without shortfall
Therefore, the shortfall at the highest exposure level is defined as the ratio of the actual to the expected DN.

The following plot shows an example of a pixel with a 1.1% shortfall.

The following histograms show how many pixels have what degree of shortfall in the various camera modes. Note that the 4×4 Gain 0 plot has a different scale than the others.

Histogram of shortfall of last exposure point

28 Histogram of shortfall of last exposure point

The images below illustrate the spatial distribution of the shortfall in the various gain states. The top row shows Gain 3 (left) and Gain 2. The bottom row shows Gain 1 (left) and Gain 0. The images have been stretched to bring out any patterns.

5.1.3.1.5 CONCLUSIONS

1. Most of the pixels with significant errors in the linear fit (blemishes) were confined to the image borders. Image interior pixels flagged as a blemishes were limited to three in Gain 2 and 1 in Gain 1 (and these were all within 3 pixels of an border).
2. It was the high-exposure behavior which generally caused the pixels to be flagged as blemishes. The low-exposure behavior seen in the WAC was not observed here.
3. The degree of shortfall at the highest exposure level varies according to the gain state.

- Gain 3: -0.5 to 1%
- Gain 2: 0 to 1%
- Gain 1: 0 to 1%
- Gain 0: 7 to 8%

4. Only Gain 0 showed any spatial structure in the degree of response falloff at high exposure (shortfall). The high exposure used for calculating the shortfall was well into the DN range of the known unusual response of this gain state.
5. Another type of anomalous behavior is inherent in the Antiblooming=ON case. For very long exposures, some pixels will appear in bright-dark pairs aligned vertically. The data set studied here was not affected by this, but the effect needs to be analyzed.

[^0]134698 134698
134699 134701
134702 134703 134704
134705 134721
134708 134708
134709 134709
134710
134711 1347112
13412 134713
134174 134715
134716 134717
134718 134719
134725 134726
134727 134728
13429 134730
134731 134732
134733 134734
134735 13473 134737
134738
134739 13473
13474 134741
134742
134743 134743
134744 134745
134746 134747
134748 134749
13450 134751
134752
13475 134753
134754 13475 134757
134758 134759 134761
134762 13476 13477
13479
134774
134775
 134779
134791 134781
134782
134783 134784 134786 13479 13479
134795
134796
134797
134798
134790
134800
134801
134800
134802
3480
13480
134880
134808
134809
134810
134811
134812
134814

[^0]: ○ㅇㅇㅇ
 ○

