5.1.6.2 WAC FM NOISE CALIBRATION RESULTS

As reported in Reference 5.1.6.2-1

Reference 5.1.6.2-1 - IOM 388-PAG-CCA96-17, 'WAC FM CALIBRATION RESULTS: COHERENT NOISE' ', C. Avis, December 6, 1996

5.1.6.2.1 INTRODUCTION

The Wide-angle Flight Model thermal/vacuum testing included the acquisition of a set of images at chamber temperatures of $+25^{\circ} \mathrm{C},+5^{\circ} \mathrm{C}$ and $-10^{\circ} \mathrm{C}$ for detection of any patterns of coherent noise in the images. The term 'coherent noise' is used to mean noise signatures which occur at consistent spatial frequencies. These signature may have electrical sources or may be due to the CCD layout.

For the purposes of this analysis, there are two types of coherent noise. The term 'fixed pattern noise' describes coherent noise which has a fixed phase (i.e., it begins at the same pixel on every line). This is the type of noise which the eye/brain can easily pick out of an otherwise random image. 'Fixed pattern noise' may be present in either the horizontal direction or the vertical direction in images. Therefore, results of analysis for both directions is described below.

The term 'electrical noise' is used herein to describe coherent noise whose phase may be shifting (i.e., it may begin at a different pixel on every line). This type of noise is not readily visible by eye. This type would be expected only in the horizontal direction.

All frames in this analysis were flat-field (no target) frames. All summation modes and gain states are represented in the dataset and both antiblooming states were used. In addition, lossless compression was exercised.

5.1.6.2.2 METHOD 1 - Electrical Noise

A periodic signal can be introduced by the signal processing of the lines of pixels. Because the lines may not be processed at regular intervals, the phase of the periodic signal may vary from line to line. As the phase of the signal shifts, the amplitude at a given frequency should remain constant whereas the real and imaginary components are changing.

- Pick an area which is as clean as possible
- Filter with a large high-pass filter to dampen the low frequencies
- Rotate image area 90 degrees, if looking for patterns in the vertical direction
- Calculate Fourier Transform of the each line
- Calculate the amplitude as a function of frequency for each line
- For each frequency, calculate the mean amplitude using all lines and tabulate.

5.1.6.2.3 METHOD 2 - Fixed Pattern Noise

Some kinds of coherent noise will affect the same pixels on every line (or the same lines in every column). This is obviously the case if the source is in the CCD layout itself. Because the phase is constant, one can best isolate this signal from the random noise by averaging the signal in real-space rather that frequencyspace.

- Pick an area which is as clean as possible
- Rotate image area 90 degrees, if looking for patterns in the vertical direction
- Average the lines in the area
- Filter with a large high-pass filter to dampen the low frequencies
- Calculate Fourier Transform of the mean line
- Calculate the amplitude and tabulate vs. frequency

5.1.6.2.4 RESULTS

The following conclusions are drawn from this analysis.

- The zero exposure frames have such low amplitude noise spectrum in the horizontal direction that the BIU transmission frequency peaks are detectable. The 0.25 DN peak in the horizontal spectrum at a frequency of 0.0136 is present in most images and and appears at about the same amplitude in all gains. The peak at 0.2938 is apparent in Gain 3, slightly in Gain 2 and not at all in Gain 1 or 0 . The peak at 0.1245 may be environmental because it is not visible in all images. These peaks are seen in zero exposure frames but not in the lowest exposed frames available.
- The antiblooming state ('ON' or 'OFF') has a major effect on the spectrum of well-exposed frames. The amplitude of the frequencies greater than 0.1 cps is increased considerably in the vertical direction for the 'ON' case. The lower the signal the less this increase occurs.
- There is a significant fixed pattern noise vertically. Peaks occur at a frequency of 0.0233 and its harmonics. Zero exposure frames do not show the pattern, but exposed frames show it in all gain states. This is consistent with the "step-and-repeat" pattern of the CCD manufacturing process.
- There is also fixed pattern noise horizontally. The appearance of the spectrum from 0 cps to 0.1 cps (in 1×1 mode) is consistent and repeatable from frame to frame (exposed frames only). This set of features shows up (at lower-resolution) at the appropriate frequencies in the summation modes. This is probably due to the "step-and-repeat" pattern of the CCD manufacturing process.
- No vertical electrical noise is apparent, as expected.
- The is no significant difference between data taken at the three temperatures.
- The LOSSLESS compression data is identical to that with no compression.

The following plots show the electrical noise spectrum at zero exposure for two frames. The peaks due to the BIU transmission frequency are visible. The 0.1245 peak comes and goes.

AMPLITUDE SPECTRUM IN HORIZONTAL DIRECTION

The following plots show the effect of Antiblooming on the spectrum.

OBSERVATION=ELECTRICAL_NOISE_528 \& 532
$\begin{array}{r}\text {-IMG132276 } \\ \hline \quad \text { IMG132245 } \\ \hline\end{array}$
LINKID=52 \& 56

The following three plots show the vertical fixed pattern noise in each summation mode. This comes from the vertical component of the 'step-and-repeat' signature.

The following three plots show the horizontal fixed pattern noise in each summation mode. This comes from the horizontal component of the 'step-and-repeat' signature.

AMPLITUDE SPECTRUM IN HORIZONTAL DIRECTION FIXED PATTERN NOISE

5．1．6．2．5 LIST OF FRAMES SUITABLE FOR COHERENT NOISE ANALYSIS

	 	\％O్MOUO	$\stackrel{\substack{* \\ \multirow{2}{*}{\multirow{2}{*}{\hline}}\\ \multirow {2} { * } \\ \hline}}{ }$			亳
	＂			－	∞	－
T	¢N\％	苗		－	あなももぢぢち	\cdots
		$\stackrel{\square}{6}$		－	䊉	
	¢ฐฐฐฐฐฐฐฐฐฐฐฐฐฐ			2\％	\％	
			く			
				－000ローローNNNNWWmm	－00ロローロN～N～Wんw	
						\％
						高
						8

```
129866 194 
lllllll
llllllll
```

- $10 C \quad A B=O F F$ LOSSLESS						
132271	201	7:52:41.0	ElECTRICAL_NOI SE_ 524	3 (40k)	FULL	0
132278	201	7:53:40.0	ELECTRICAL_NOI SE-524	3 (40k)	full	80
132279	201	7:54:39.0	ELECTRICAL_NOI SE-524	3 (40k)	full	180
132280	201	7:55:38.0	Electrichi_Noi SE_-524	3 (40k)	full	320
132281	201	7:56:46.0	ELECTRI CAL_NOI SE_ 525	2 (100k)	FULL	0
132282	201	7:57:45.0	ELECTRI CAL_NOI SE_ 525	2 (100K)	full	150
132283	201	7:58:44.0	Electri Cal_NOI SE_525	2 (100K)	FULL	380
132284	201	7:59:43.0	ELECTRICAL_NOI SE_ 525	2 (100k)	Full	680
132285	201	8:0:51.0	ELECTRICAL_NOO SE-526	1 (400K)	SuM2	0
132286	201	8:1:12.0	Electrichi_Noi SE-526	1 (400K)	SuM2	150
132287	201	8:1:33.0	ELECTRICAL_NOI SE-526	1 (400k)	Sum2	320
132288	201	8:1:54.0	ELECTRICAL_NOO SE_-526	1 (400k)	SuM2	560
132289	201	8:2:24.0	ELECTRICAL_NOI SE_527	0 (1400k)	suma	
132290	201	8:2:40.0	ELECTRICAL_NOI SE_527	0 (1400k)	SuM4	80
132291	201	8:2:54.0	ELECTRICAL_NOI SE_527	0 (1400k)	SuM4	180
132292	201	8:3:9.0	ELECTRICAL_NOI SE_527	0 (1400k)	SUM4	320
- $10 C$ AB $=0 \mathrm{~N}$ NOTCOMP						
132242	201	7:3:54.0	Electrical_ Nol SE_528	3 (40k)	full	
132243	201	7:4:53.0	ELECTRICAL_NOI SE_528	3 (40k)	full	80
132244	201	7:5:52.0	ELECTRICAL_NOI SE_528	3 (40k)	FULL	180
132245	201	7:6:51.0	ELECTRICAL_NOI SE_528	3 (40k)	full	320
132246	201	7:7:59.0	ELECTRICAL_NOI SE_529	2 (100k)	full	0
132247	201	7:8:58.0	Electrical_Noi SE_ 529	2 (100k)	FULL	150
132248	201	7:9:57.0	ELECTRICAL_NOI SE_529	2 (100k)	full	380
132249	201	7:10:56.0	ELECTRICAL_NOI SE_529	2 (100k)	full	680
132250	201	7:12:4.0	Electrical_NOI SE_-530	1 (400k)	SuM2	0
132251	201	7:12:25.0	Electrical_Nol SE_-530	1 (400K)	SuM2	150
132252	201	7:12:46.0	ELECTRICAL_NOI SE_530	1 (400K)	SUM2	320
132253	201	7:13:7.0	ELECTRICAL_NOI SE_530	1 (400K)	SUM2	560
132254	201	7:13:37.0	ELECTRICAL_NOI SE_531	0 (1400k)	SuM4	0
132255	201	7:13:52.0	ELECTRICAL_NOI SE_ 531	0 (1400k)	suma	80
132256	201	7:14:7.0	Electrical_NOI SE_531	0 (1400k)	sum4	180
132257	201	7:14:22.0	ELECTRICAL_NOI SE_531	0 (1400k)	SuM4	320
- 10 C AB $=0 \mathrm{FF}$ NOTCOMP						
132258	201	7:14:48.0	Electrical_ Nol SE_532	3 (40k)	full	0
132274	201	7:35:52.0	ELECTRICAL_NOI SE_ 532	3 (40k)	full	80
132275	201	7:36:51.0	ELECTRICAL_NOI SE_532	3 (40k)	full	180
132276	201	7:37:50.0	ELECTRI CAL_NOI SE_532	3 (40k)	full	320
132262	201	7:19:4.0	ELECTRI CAL_NOI SE_533	2 (100k)	full	0
132263	201	7:20:3.0	ELECTRICAL_NOI SE_533	2 (100k)	full	150
132264	201	7:21:2.0	ELECTRI CAL_NOI SEE-533	2 (100k)	FULL	380
132265	201	7:22:1.0	ELECTRICAL_NOI SE_ 533	2 (100K)	FULL	680
132266	201	7:23:9.0	ELECTRICAL_NOI SE_534	1 (400K)	SUM2	0
132267	201	7:23:30.0	ELECTRI CAL_NOI SE_534	1 (400K)	SUM2	150
132268	201	7:23:51.0	ELECTRICAL_NOI SE_534	1 (400K)	SuM2	320
132269	201	7:24:12.0	ELECTRI CAL_NOI SE_534	1 (400k)	SuM2	560
132270	201	7:24:45.0	Electril CaL_NOI SE_535	0 (1400k)	suma	0
132271	201	7:25:0.0		0 (1400k)	suma	80
132272	201	7:25:15.0	ELECTRI CAL_NOI SE_535	0 (1400k)	suma	180
132273	201	7:25:30.0	ELECTRI CAL_NOI SE_535	0 (1400k)	Sun4	320

