PIA13482: Fractured Mounds in Elysium Planitia


Fractured Mounds in Elysium Planitia

Caption:

This observation shows fractured mounds on the southern edge of Elysium Planitia.

The mounds are typically a few kilometers in diameter and about 200 feet tall. The fractures that crisscross their surfaces are dilational (extensional) in nature, suggesting that the mounds formed by localized uplift (i.e., they were pushed up from below).

The mounds are probably composed of solidified lava. They are contiguous with, and texturally similar to, the flood lavas that blanket much of Elysium Planitia, and, where dilation cracks provide cross-sectional exposure, the uplifted material is rocky.

Patches of mechanically weak and disrupted material overlie the rocky mound material. This is particularly conspicuous in the Northeast corner of the HiRISE image. These patches may be remnants of a layer that was once more continuous but has been extensively eroded. Smooth lava plains fill the low-lying areas between the mounds. They are riddled with sinuous pressure ridges. The entire area is covered by a relatively thin layer of dust and sand.

Originally released Dec. 8, 2008.

Background Info:

NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, built the spacecraft. The High Resolution Imaging Science Experiment is operated by the University of Arizona, Tucson, and the instrument was built by Ball Aerospace & Technologies Corp., Boulder, Colo.

Cataloging Keywords:

Name Value Additional Values
Target Mars
System
Target Type Planet
Mission Mars Reconnaissance Orbiter (MRO)
Instrument Host Mars Reconnaissance Orbiter
Host Type Orbiter
Instrument High Resolution Imaging Science Experiment (HiRISE)
Detector
Extra Keywords Color, Dust
Acquisition Date
Release Date 2010-10-15
Date in Caption 2008-12-08
Image Credit NASA/JPL-Caltech/University of Arizona
Source photojournal.jpl.nasa.gov/catalog/PIA13482
Identifier PIA13482